134 research outputs found

    Contribution of CaMKIV to injury and fear- induced ultrasonic vocalizations in adult mice

    Get PDF
    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB. Our previous work demonstrated that mice lacking CaMKIV had a defect in fear memory while behavioral responses to noxious stimuli were unchanged. Here, we measured ultrasonic vocalizations (USVs) before and after fear conditioning and in response to a noxious injection of capsaicin to measure behavioral responses to emotional stimuli. Consistent with previous findings, behavioral nociceptive responses to capsaicin were undistinguishable between wild-type and CaMKIV(-/- )mice. Wild-type animals showed a selective increase in 50 kHz USVs in response to capsaicin while such an increase was absent in CaMKIV(-/- )mice. The foot shock given during fear conditioning caused an increase in 30 kHz USVs in both wild-type and CaMKIV(-/- )mice. When returned to the context one hour later, USVs from the wild-type were significantly decreased. Additionally, the onset of a tone, which had previously been paired with the foot shock, caused a significant decrease in USVs during auditory conditioning. CaMKIV(-/- )mice showed significantly less reduction in USVs when placed in the same context three days after receiving the shock, consistent with the decrease in freezing reported previously. Our results provide a new approach for investigating the molecular mechanism for emotional vocalization in mice and suggest that CaMKIV dependent signaling pathways play an important role in the emotional response to pain and fear

    Regulatory T Cells: Exosomes Deliver Tolerance

    Get PDF
    T regulatory (Treg) cells enforce peripheral tolerance through regulation of diverse immune responses in a context-specific manner. Okoye et al. show one way that Treg cells suppress Th1 cell responses is through nonautonomous gene silencing mediated by microRNA-containing exosomes

    A Simple Multicoupled Band-Pass Active Filter Design Employs Resistor Summing to Provide Multicoupling

    Get PDF
    The purpose of this paper is to present a new design configuration for multicoupled band-pass filter based on Mason\u27s loop rule, together with the negative feedback topology and to compare it with Leap Frog (LF) and Follow the Leader Feedback (FLF) design examples

    Targeted Inactivation of the IL-4 Receptor α Chain I4R Motif Promotes Allergic Airway Inflammation

    Get PDF
    The insulin/interleukin-4 (IL-4) receptor (I4R) motif mediates the association of insulin receptor substrate (IRS)-2 with the interleukin-4 (IL-4)Rα chain and transduces mitogenic signals in response to IL-4. Its physiological functions were analyzed in mice with a germline point mutation that changed the motif's effector tyrosine residue into phenylalanine (Y500F). The Y500F mutation abrogated IRS-2 phosphorylation and impaired IL-4–induced CD4+ T lymphocyte proliferation but left unperturbed Stat6 activation, up-regulation of IL-4-responsive gene products, and Th cell differentiation under Th2 polarizing conditions. However, in vivo the Y500F mutation was associated with increased allergen-induced IgE production, airway responsiveness, tissue eosinophilia, and mucus production. These results define an important role for the I4R motif in regulating allergic inflammation

    Control of Cortical Axon Elongation by a GABA-Driven Ca<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-weight: inherit; font-style: inherit; font-size: 0.85em; font-family: inherit; line-height: 0; text-align: inherit; vertical-align: super;">2+/Calmodulin-Dependent Protein Kinase Cascade</sup>

    Get PDF
    Ca(2+) signaling plays important roles during both axonal and dendritic growth. Yet, whether and how Ca(2+) rises may trigger and contribute to the development of long range cortical connections remains largely unknown. Here we demonstrate that two separate limbs of CaMK kinase (CaMKK) - CaMKI cascades, CaMKK-CaMKIα and CaMKK-CaMKIγ, critically coordinate axonal and dendritic morphogenesis of cortical neurons, respectively. The axon-specific morphological phenotype required a diffuse cytoplasmic localization and a strikingly α-isoform-specific kinase activity of CaMKI. Unexpectedly, treatment with muscimol, a GABA(A) receptor agonist, selectively stimulated elongation of axons but not of dendrites, and the CaMKK-CaMKIα cascade critically mediated this axonogenic effect. Consistent with these findings, during early brain development, in vivo knockdown of CaMKIα significantly impaired the terminal axonal extension, and thereby perturbed the refinement of the interhemispheric callosal projections into the contralateral cortices. Our findings thus indicate a novel role for the GABA-driven CaMKK-CaMKIα cascade as a mechanism critical for accurate cortical axon pathfinding, an essential process which may contribute to fine-tuning the formation of interhemispheric connectivity during the perinatal development of the central nervous system
    corecore